
CS 61A Discussion 8:
Scheme

March 23, 2017

Announcements

• Ants is due today. Finish it! Also turn it in!

• HW 6 is due tomorrow. Finish it! Also turn it in!

• HW party today from 6:30-8:30p in 247 Cory.

• Midterm scores are out. Good job everyone!
 (Submit regrades by Sunday 4/2 or forever hold your peace.)

116 Attendance: cinnamon_twist
140 Attendance: vanilla_bark

Scheme
As long as 61A lives, it lives

(also I don’t know who these people are, so don’t ask)

First of all, why are we even learning this
<insert choice words here> language?

• To get experience with
different languages and
paradigms (functional
programming!)

• So you guys can write an
interpreter for it (project 4
hype)

All right, I’m sold. So how do we learn this
<insert choice words here> language?

• Test code in Jack’s interpreter
(scheme.cs61a.org)

• Read Kevin’s guide (tiny.cc/
kevin_scheme)

• Check out the Scheme
reference (tiny.cc/scheme_ref)

• Gaze at infographics (tiny.cc/
scheme_illu)

• Write your own code! The
more you write, the better you
will become

http://scheme.cs61a.org
http://tiny.cc/kevin_scheme
http://tiny.cc/kevin_scheme
http://tiny.cc/scheme_ref
http://tiny.cc/scheme_illu
http://tiny.cc/scheme_illu

Important point for the future
• Everything in Scheme is either

a primitive or a combination.

• Primitives (atomic elements)
look like numbers and
symbols: 3, ‘4, …

• Combinations look like
Scheme lists: (define x 6)

• Note: in a meta sense,
(define x 6) is really just a
well-formed list containing the
elements ‘define, ‘x, and 6!

A couple of random notes
…that it won’t hurt to remember

• The only false values in Scheme are #f, False, and
false. Everything else is true!

• Symbols are immutable strings; think of them like variable
names or the code itself. They are case-insensitive.

• To get a symbol, use the quote operator:

scm> (define x 6)
x
scm> ‘x ; the symbol x
x
scm> x ; VALUE of the symbol x
6

Definitions

• define binds a value to a name (just like = in
Python). Note that define always returns the
symbol that has just been assigned a value!

• (define x 6) ; variable

• (define (identity x) x) ; procedure

Call Expressions

• (<procedure> <arguments>)

• Evaluation (same as Python):
• Evaluate the operator, then evaluate each of the

operands.
• Apply the operator to the evaluated operands.

Testing for equality

• = is used for numbers (and numbers only!)

• equal? is used for everything else (…although it
actually works for numbers as well)

Special Forms

• define, if, and, or,
not, lambda, let

• Special forms look like
function calls (because
they’re surrounded by
parentheses), but don’t
follow the same execution
process

Lambdas

• (lambda (<params>) <expression>)

• Much like Python, lambdas are first-class function
values and you create new frames when you call
them.

• Much like Python, <expression> isn’t evaluated
until the lambda is called.

WWSP?

((lambda (x) (x x)) (lambda (y) 4))

WWSP?

((lambda (x) (x x)) (lambda (y) 4))

Answer: 4

Let
(let ((<symbol-1> <value-1>)
 ...
 (<symbol-n> <value-n>))
 <body>)

is equivalent to

((lambda (<symbol-1> … <symbol-n>)
<body>)

 <value-1> … <value-n>)

It’s basically saying “assign these
variables to these values, and then
execute this code with those
assignments in effect.”

Pairs
• (cons <elt1> <elt2>) creates a pair

containing the elements <elt1> and <elt2>.

• (car pair) selects the first element of a pair.

• (cdr pair) selects the second element of a pair.

• nil, (), ‘() are equivalent and represent the
empty list.

Well-formed lists

• A well-formed list is a sequence of pairs where
the second element of each pair is ALWAYS either
another pair or nil.

• Malformed list: a sequence of pairs where the
second element of ANY of those pairs is something
other than another pair or nil.

Connecting the dots
• The dot delimits the first and second element of a pair.

• Note that well-formed lists do not have dots in their final
interpreter output.

• Rules for displaying a pair in interpreter format:
• Use a dot to separate the first and second elements

of a pair.
• If the second element is also a pair (i.e. the dot is

immediately followed by an open parenthesis), then
remove the dot and the next set of parentheses.

• In this way, (cons 1 (cons 1 2)) becomes
(1 . (1 . 2)) and finally (1 1 . 2) when we
break it down into the interpreter’s final output.

The list operator
• (list <args>) takes zero or more arguments

and returns a well-formed list of its arguments (i.e.
each argument is in the car field of its respective
pair).

• (list <arg1> <arg2>) ! (<arg1> <arg2>)

• Quoting does the same thing... but expressions
that are not self-evaluating (i.e. variables or
procedure calls) will not be evaluated.

The difference between
list and ‘

scm> (define a 1)

a

scm> (define b 2)

b

scm> (list a b)

(1 2)

scm> ‘(a b)

(a b)

List examples

scm> (equal? ‘(1 2) (list 1 2))

true

scm> ‘(1 . (2 3))

(1 2 3)

scm> ‘(define (square x) (* x x))

(define (square x) (* x x))

append
A useful procedure for concatenating lists that never seems to
officially get covered. Takes in zero or more lists (not list
elements!), and returns a single well-formed list containing all
the elements of the input lists, in order.

scm> (append <lst1> <lst2> …)

(<lst1 elements> <lst2 elements> …)

If you pass in no arguments, it returns nil. It also has robust
behavior for random nils as arguments:

scm> (append nil ‘(1 (2)) nil ‘(3) nil nil ‘(5))

(1 (2) 3 5)

:)

thanks for coming everyone!

